Classification of lung nodules on CT via pseudo-colour images and deep features from pre-trained convolutional networks

Francesco Bianconi¹ Mario L. Fravolini¹ Elena Caltana¹ Muhammad U. Khan^{1,2} Barbara Palumbo³ *Computational Color Imaging Workshop (CCIW 2024)* Milan, 25–27 Sep. 2024

¹Department of Engineering, Università degli Studi di Perugia, Italy ²CNIT, Perugia Research Unit, Italy ³Department of Medicine and Surgery, Università degli Studi di Perugia, Italy

Outline

Background and motivation

Materials

Methods

Experiments

Results and discussion

Conclusions, limitations and future work

Background and motivation

Lung cancer: facts and figures

- Leading cause of cancer-related death in the US (about 1 in 5 of all cancers)
- Chance of developing lung cancer in a lifetime:
 - 1/16 (men)
 - 1/17 (women)
- Five-year survival rates:
 - 65% (localised)
 - 37% (regional)
 - 9% (distant)

Source: American Cancer Society, accessed 16 Jun. 2024

- Survival depends a great deal on the **stage** the disease is first detected
- Early detection and diagnosis are critical for a better outcome
 - At an initial stage lung cancer usually presents as a small, rounded opacity, often detected on CT (**lung nodule**)
 - However, only a small fraction of lung nodules represent malignancies
- The clinical management of patients with suspicious lung nodules is intrinsically difficult

Computerised analysis (radiomics) can improve the diagnosis of indeterminate lung nodules detected on CT

- Based on the extraction of **quantitative features**
- Takes advantage of picture data invisible to the naked eye
- Leverages on AI methods and datasets of pre-classified data

Current approaches:

- **Conventional radiomics** (feature engineering & hand-crafted features)
- Deep Learning radiomics (CNN)

- Deep Learning radiomics is generally superior in accuracy, however:
 - We need large datasets to train the nets
 - We may easily incur in overfitting and lack of generalisation
- Alternatively, we can use and **pre-trained** networks off-the shelf, but:
 - The majority of pre-trained CNN accept **planar colour images** as input
 - CT data are grey-scale and volumetric

- To investigate pseudo-colouring schemes to
 - Transform 3D gray-scale CT data to 2D pseudo-colour images
 - Extract feature from the pseudo-colour images by pre-trained CNN
- To evaluate the effectiveness of this strategy to discriminate **benign vs. malignant** lung nodules detected on CT

Materials

- Two independent datasets of **solid** and **part solid** lung nodules
- Sourced form public, open access collections (LIDC-IDRI, LUNGx)
- Common inclusion criterion:
 - Nodule size¹ between 10.0 mm and 50.0 mm

¹Defined as the length of the largest side of the axis-aligned bounding box

F. Bianconi et al. CCIW 2024, Milan, 25-27 Sep. 2024

- *n* = 633 (261 benign, 372 malignant)
- Manually annotated lesion delineation and malignancy score by at least one radiologist

Inclusion criteria:

- Annotations by at least two radiologists
- Texture score (solidity) ≥ 3.0 (1.0 = GGO, 5.0 = solid)
- Malignancy score either \leq 2.5 (\rightarrow benign) or \geq 3.5 (\rightarrow malignant)

Lesion delineation (ROI) based on the 50% consensus rule

- n = 69 (32 benign, 37 malignant)
- Manual lesion delineation by consensus (panel of two experts)

Inclusion criteria:

• Solid or sub-solid nodules determined by visual assessment (panel of two experts)

Methods

Involves the following steps:

- 1. Image preparation (pre-processing)
- 2. Generation of the pseudo-colour images
- 3. Feature extraction via pre-trained CNNs
- A further optional step was also considered:
 - Background removal (contextual information)

Image preparation

- Isotropic spatial resampling (0.6 mm × 0.6 mm × 0.6 mm)
- Extraction of a cubic tensor (91 \times 91 \times 91) around the centroid of the nodule
- Signal **windowing** ([-1000 HU, 500 HU])
- Signal quantisation (256 levels)

Pseudo-colouring by three orthogonal slices (PCL)

Note: '0' indicates the central slice - i.e., through the centroid of the ROI

Pseudo-colouring by principal components (PCA)

Pseudo-colouring by central axial slice (GS)

Two options:

• Both the nodule and the contextual conformation is retained:

• Contextual information is blanked (background removal):

Feature extraction via pre-trained CNNs

- Three models pre-trained on IMAGENET with best available weights as provided by PyTorch's DEFAULT option:
 - ConvNeXT
 - ResNet50
 - Swin V2
- Feature extracted from the last avgpool layer and L₁ normalised
- Networks operated in frozen (eval) mode

A total of 109 IBSI-compliant features:

 12 morphological, 19 intensity-based, 23 histogram-based, 23 from grey-level co-occurrence matrices (GLCM), 11 from grey-level run-length matrices (GLRLM), 5 from neighbourhood grey-tone difference matrices (NGTDM) ad 16 from grey-level size zone matrices (GLSZM)

Calculation based on LIFEx v. 7.4.0

Pre-processing (spatial resampling, signal windowing and quantisation) same as for the CNN-based features

Feature normalisation methods:

- None
- Min-max
- Z-score

Classifiers:

- 1-NN
- Gaussian NB
- Linear classifier
- Logistic regression

Experiments

Four experimental conditions

- Internal validation (on each dataset by 4-fold):
 - 1. LIDC-IDRI
 - 2. LUNGx
- Cross validation:
 - 3. LIDC-IDRI (train), LUNGx (test)
 - 4. LUNGx (train), LIDC-IDRI (test)

For each experimental condition we carried out a full-factorial plan with the following factors and levels:

Factor	Levels
Pseudo-colour method*	GS, PCA, PCL
Background removal	Yes, No
Feature extraction	conventional, ConvNeXT, ResNet50, Swin V2
Feature normalisation	None, Min-max, Z-score
Classifier	1-NN, Gaussian NB, Linear classifier, Logistic regression

* Does not apply to conventional radiomics features.

Results and discussion

LIDC-IDRI (internal validation):

- PCA 84.7% (ConvNeXT + background removal)
- PCL 88.5% (ConvNeXT + background removal)
- GS 59.7% (ResNet50, no background removal)
- Conventional 85.5%

LUNGx (internal validation):

- PCA 65.2% (ConvNeXT, no background removal)
- PCL 69.6% (ConvNeXT + background removal)
- GS 66.7% (Swion V2, no background removal)
- Conventional 60.9%

LUNGx (train), LIDC-IDRI (test):

- PCA 68.9% (Swin V2 + background removal)
- PCL 68.1% (Swin V2 + background removal)
- GS 58.8% (Swin V2/ResNet50)
- Conventional 65.2%

LIDC-IDRI (train), LUNGx (test):

- PCA 63.8% (ResNet50, no background removal)
- PCL 65.2% (Swin V2/ResNet50 + background removal)
- GS 62.3% (ConvNeXT/ResNet50 + background removal)
- Conventional 63.8%

- Features from pre-trained CNNs **outperformed** conventional radiomics features in all the experimental conditions
- Pseudo-colour generation
 - PCL was the best option in three experimental conditions
 - PCA in the remaining one
- Best accuracy was always achieved with **background** removal on
 - Is contextual information a confounding factor?

Conclusions, limitations and future work

- We have investigated the ability of deep features from **pseudo-colour images** and **pre-trained CNN** to distinguish benign from malignant lung nodules on CT
- The method seems viable (results better than obtained with conventional radiomics features)

- Relatively small **sample size** of one of the two datasets (LUNGx, *n* = 69)
- Retrospective nature of the study population
- Role of clinical features (e.g., gender, age, history) and other radiological features (e.g., spiculation, lobulation, nodule's location) not investigated in this study

- To better understand the role of **contextual information** (background) on nodule classification
- To determine whether **conventional** and **deep features** provide **complementary information** and investigate ways to **combine** them
- To explore other methods for generating pseudo-colour images (Random projections? Topological data analysis?)

Thank you for your attention Any questions?