

AI & RADIOMICA IN MEDICINA NUCLEARE: LUCI ED OMBRE

Roma, Centro studi il Cardello 17 dicembre 2024

IA e radiomica: uno sguardo d'insieme su strumenti e metodi

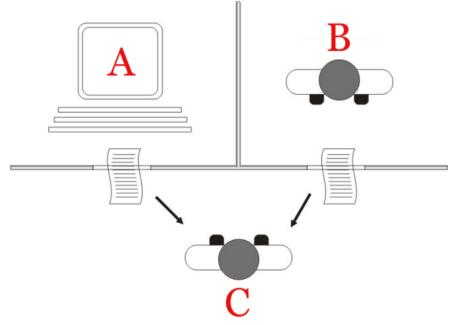
Francesco Bianconi¹

¹Dipartimento di Ingegneria, Università degli Studi di Perugia

Sommario

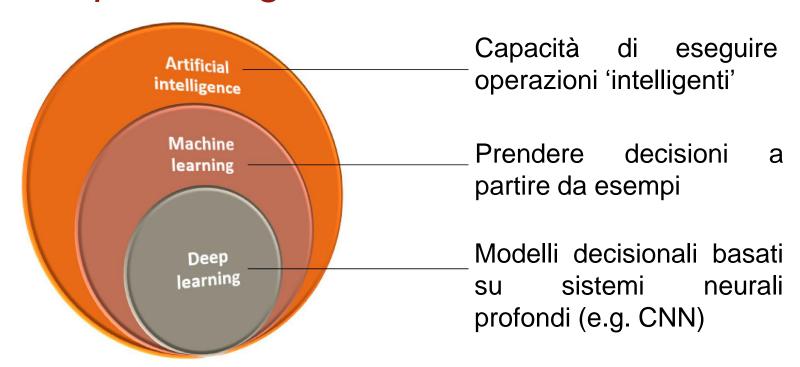
- Introduzione e background
- Metodi
- > Strumenti
 - Pre-processamento, segmentazione, estrazione delle caratteristiche
 - Analisi dei dati, costruzione modelli predittivi
- Limitazioni ed ostacoli
- Conclusioni

Introduzione e background

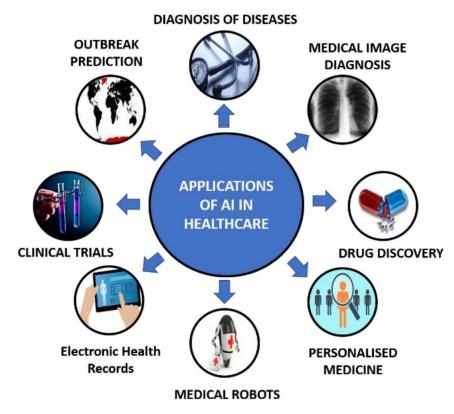

Intelligenza artificiale: definizione

La capacità di un computer o di un sistema/robot controllato da un computer di eseguire compiti svolti da esseri intelligenti (Britannica)

Intelligenza artificiale: il test di Turing 'Imitation game' (1949)


- Un valutatore umano (C) dialoga con due parti, di cui una è una macchina (A) e l'altra è un umano (B)
- Il valutatore (C) non sa quale sia l'umano e quale la macchina
- Se il valutatore non riesce a determinare qual è l'umano e quale la macchina allora la macchina ha superato il test

Credits: J.A. Sánchez Margallo via Wikimedia Commons. CC BY 2.5.


Intelligenza artificiale, machine learning e deep learning

Adattato da S. Busnatu et al., Journal of Clinical medicine, 2022 CC BY 4.0.

Intelligenza artificiale: applicazioni in ambito medico

Da S. Pandya et al., Sensors, 2021 CC BY 4.0.

Radiomica

- Termine proposto per la prima volta da Lambin et al. (Eur J Cancer, 2012)
- Estrazione di dati quantitativi (feature) a partire da imaging medico (CT, PET, MRI, etc.)
- Utilizzo delle feature come supporto alle decisioni cliniche
 - Confronto con valori soglia
 - Costruzione di modelli predittivi complessi (machine learning)

Aree di potenziale applicazione

- > Settore oncologico
 - Tumori solidi
- Condizioni neurodegenerative
 - Alzheimer's, Parkinson's, etc.
- Patologie cardiovascolari
 - Coronaropatie, scompenso cardiaco.

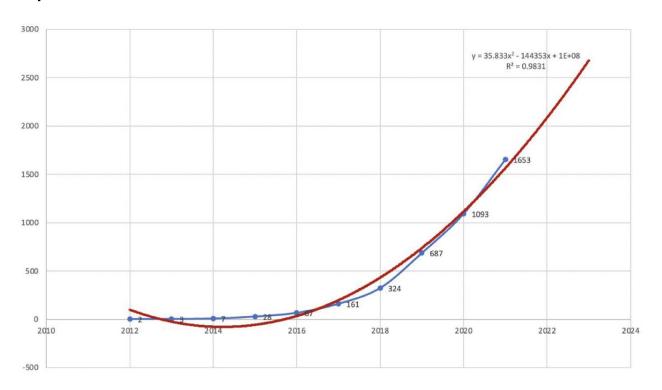
Applicazioni nel settore oncologico

Diagnostica assistita

- Benigno vs. maligno
- Primario vs. metastatico
- Predizione sottotipo istologico

Stratificazione rischio

- Predizione sopravvivenza
- Scelta approccio terapeutico
 - Predizione risposta alla terapia (chemio-, radio-, immuno-)
- Pianificazione del follow-up


Potenziali vantaggi della radiomica

- > Analisi a **campo intero** della regione d'interesse
- Basata su dati quantitativi, oggettivi e riproducibili
- Metodica non invasiva

Radiomica: trend dei lavori pubblicati

L'analisi bibliometrica mostra una crescita esponenziale dei lavori scientifici a livello mondiale

Dati relativi al periodo ott. 2012—ott. 2022 (blu) + estrapolazione Da Zhang et al., Technol. Cancer Res. Treat., 2024. CC BY-NC 4.0

Radiomica: contributi scientifici per nazione

Country	Articles	SCP	МСР	Freq	MCP_Ratio	тс	Average article citations
CHINA	2871	2468	403	0.447	0.14	32127	11.19
USA	1070	703	367	0.166	0.343	35205	32.90
ITALY	508	386	122	0.079	0.24	6233	12.27
GERMANY	258	164	94	0.04	0.364	4944	19.16
KOREA	239	221	18	0.037	0.075	4195	17.55
FRANCE	210	149	61	0.033	0.29	5036	23.98
NETHERLANDS	188	88	100	0.029	0.532	10852	57.72
CANADA	156	86	70	0.024	0.449	3673	23.54
UNITED KINGDOM	140	69	71	0.022	0.507	2476	17.69
JAPAN	119	110	9	0.019	0.076	1168	9.82

Dati relativi al periodo ott. 2012—ott. 2022

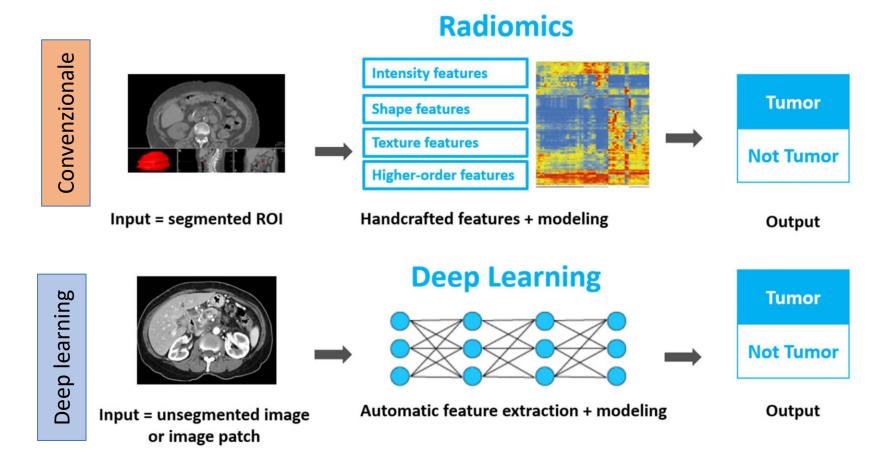
Da Zhang et al., Technol. Cancer Res. Treat., 2024. CC BY-NC 4.0

SCP=Single-country publications, MCP=Multiple-country publications, Freq=% of the total

Radiomica: contributi scientifici per rivista

Rank	Journal title	Country	Counts	IF(2021)	JCR	H-index	Total citations
1	FRONTIERS IN ONCOLOGY	Switzerland	596	5.738	Q2	26	3891
2	EUROPEAN RADIOLOGY	Germany	391	7.034	Q1	47	7550
3	CANCERS	Switzerland	271	6.575	Q2	18	1513
4	SCIENTIFIC REPORTS	ENGLAND	254	4.996	Q1	45	7396
5	JOURNAL OF MAGNETIC RESONANCE IMAGING	United States	150	5.119	Q1	33	3202
6	MEDICAL PHYSICS	United States	146	4.506	Q1	28	2647
7	EUROPEAN JOURNAL OF RADIOLOGY	Netherlands	145	4.531	Q1	28	2386
8	DIAGNOSTICS	Poland	132	3.992	Q4	15	654
9	ABDOMINAL RADIOLOGY	United States	130	2.886	Q2	21	1349
10	ACADEMIC RADIOLOGY	United States	91	5.482	Q1	20	1142

Dati relativi al periodo ott. 2012—ott. 2022


Da Zhang et al., Technol. Cancer Res. Treat., 2024. CC BY-NC 4.0

Metodi

Radiomica: 'convenzionale' vs. Deep Learning (I)

Da K. Preuss et al., Cancers, 2022 CC BY 4.0.

Radiomica: 'convenzionale' vs. Deep Learning (II)

Convenzionale

- Richiede segmentazione della ROI
- Feature definite a priori ('handcrafted')
- Possibile interpretazione delle features in termini fisico-biologici

Deep Learning

- Segmentazione della ROI non necessaria (ma possibile!)
- Feature basate su reti preaddestrate (data-driven)
- Difficile interpretazione delle features in termini fisico-biologici (approccio 'black-box')

Radiomica convenzionale: le fasi del processo

Image acquisition and pre-processing

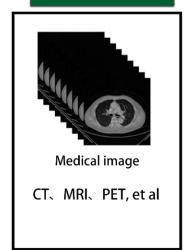
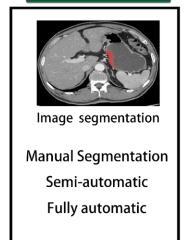
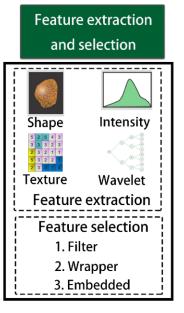
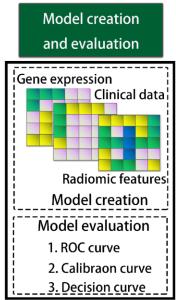
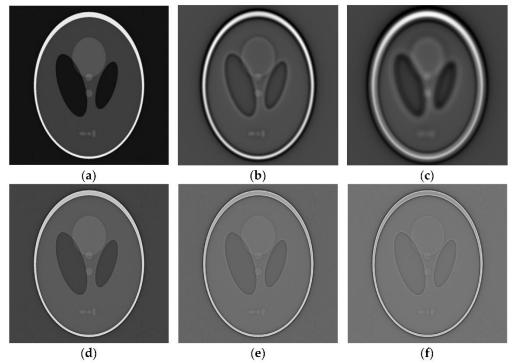





Image segmentation


Da W. Zhang et al., Symmetry, 2023 CC BY 4.0.

Acquisizione e pre-processamento

Consiste nell'esecuzione dell'esame ed in una o più tra le seguenti operazioni:

- > Filtraggio
- Resampling spaziale
- Finestratura e quantizzazione del segnale

Da Y. Jiang et al., Mathematics, 2022 CC BY 4.0.

Segmentazione

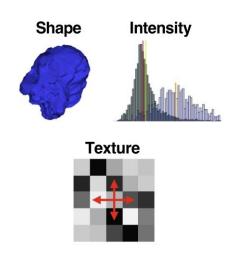
Consiste in:

- Identificazione della lesione
- Contornazione della lesione

Può essere:

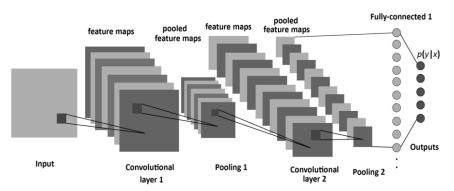
- Manuale
- > Semi-automatica
- Automatica

Method _	View						
	Coronal	Sagittal	Axial				
Manual							
SUV 2.5							
40% SUVmax							
50% SUVmax							
Nestle	8						


Da F. Bianconi et al., Sensors, 2023 CC BY 4.0.

Estrazione delle feature

Feature radiomiche convenzionali:

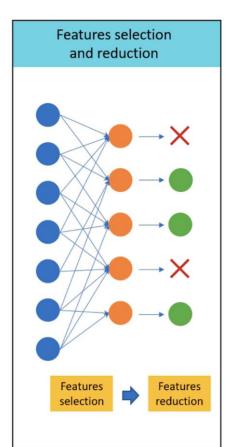

- Intensità, istogramma
- Texture
- > Forma

Adattato da A. Chaddad et al., Sensors, 2023 CC BY 4.0.

Feature basate su deep learning:

Convolutional networks (CNN)

Da S. Albelwi e A. Mahmood, Entropy, 2017 CC BY 4.0.


Post-processamento delle feature

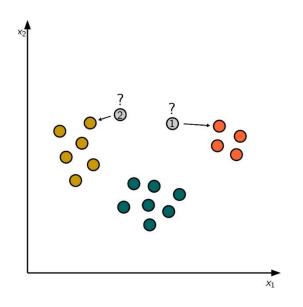
Può consistere in:

- Selezione delle feature
- Combinazione delle feature

Obiettivi:

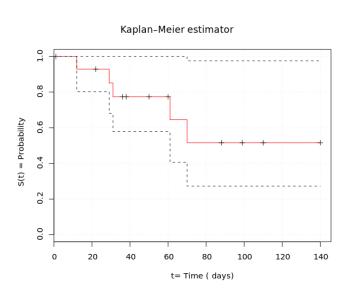
- Aumento della capacità predittiva
- Riduzione della dimensionalità
- Semplificazione dei modelli

Adattato da Y.-J. Wu et al., Diagnostics, 2022 CC BY 4.0.



Analisi dei dati (I)

Obiettivo: costruzione di modelli predittivi


Classificazione

E.g. benigno vs. maligno

Regressione

E.g. stima della sopravvivenza

Analisi dei dati (II)

Comprende due fasi:

- Costruzione del modello (addestramento)
 - Si presenta al classificatore e/o regressore un insieme di casi (esempi) etichettati (e.g., feature + etichetta di classe)
- Predizione (classificazione/regressione)
 - Si interroga il modello su un caso specifico (si presentano le feature)
 - Il modello effettua una predizione (etichetta di classe, probabiltà, etc.)

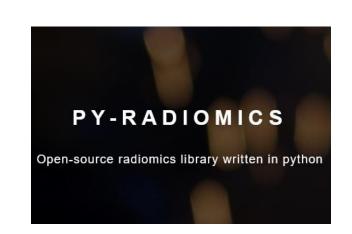
Strumenti

Strumenti

Pre-processamento, segmentazione, estrazione feature

LIFEx – Local Image Feature Extraction

- Tipologia: applicazione stand-alone con interfaccia grafica
- > Funzionalità:
 - Preprocessamento immagini
 - Segmentazione manuale, semiautomatica e automatica
 - Calcolo feature radiomiche
 - Convenzionali
- Termini d'uso: free (non open-source) per utilizzo non commerciale (<u>licenza proprietaria</u>)


https://www.lifexsoft.org

Pyradiomics

- Tipologia: libreria di funzioni (Python)
 - Possibilità di interfaccia grafica tramite 3D Slicer
- > Funzionalità:
 - > Preprocessamento immagini
 - Calcolo feature radiomiche
 - Convenzionali
- Termini d'uso: freeware, open source (BSD-3-Clause)

https://pyradiomics.readthedocs.io/en/latest/index.html

Strumenti

Costruzione modelli predittivi

Python

With Pandas, NumPy, scikit-learn and Matplotlib

- Tipologia: librerie di funzioni per Python
- Funzionalità:
 - Selezione/combinazione feature
 - Classificazione
 - Regressione
 - Visualizzazione dati
- **Termini d'uso**: free per uso commerciale e non, open-source (PSFL, specifiche licenze singolo pacchetto)

Orange data mining

- Tipologia: ambiente visuale basato su interfaccia drag-and-drop
- > Funzionalità:
 - Selezione/combinazione feature
 - Classificazione
 - > Regressione
 - Visualizzazione dati
- > **Termini d'uso**: free, non opensource (GPLv3)

https://orangedatamining.com/

Weka

- Tipologia: ambiente visuale basato su interfaccia drag-and-drop
- > Funzionalità:
 - Selezione/combinazione feature
 - Classificazione
 - > Regressione
 - Visualizzazione dati
- Termini d'uso: free, open-source (GPLv3)

WEKA

The workbench for machine learning

https://ml.cms.waikato.ac.nz/weka/

Strumenti integrati

matRadiomics

- Tipologia: ambiente con interfaccia grafica
 - Backend: Matlab & pyradiomics
- Funzionalità:
 - Segmentazione
 - Calcolo delle feature
 - > Selezione, combinazione e armonizzazione
 - Classificazione
 - > Regressione
 - Visualizzazione dati
- Termini d'uso: open-source (licenza sconosciuta)

MATLAB

MATLAB

Toolboxes
Image processing

-Statistics and ML

Libraries
numpy
pandas
scipy
pydicom
pyradiomics
scikit-learn
opepyxl
xlrd

3 Modules
-Dicom Module
-pyradiomicsModule
-classificationModule

https://www.ibfm.cnr.it/matradiomics/?lang=en

Limitazioni ed ostacoli

Radiomica: limitazioni ed ostacoli

- Disponibilità di dati
 - Idealmente prospettici, multi-centro e ad accesso libero
- Problemi etici
 - Accesso e condivisione dei dati
- Rispetto regolamentazioni su dispositivi medici (MDR)
- Riproducibilità e standardizzazione
 - > IBSI
- > Interpretabilità dei risultati
 - Problema del 'black box'
- Interazione uomo/macchina
 - Propensione ad avvalersi dei risultati forniti dalla macchina

Adattato da <u>S. Busnatu et al.,</u> Journal of Clinical medicine 2022 <u>CC</u> <u>BY 4.0</u>.

Conclusioni

Conclusioni

- La radiomica offre prospettive interessanti per la medicina personalizzata e di precisione
 - Metodica non invasiva basata su dati quantitativi
- Gap tra ricerca ed applicazioni cliniche
- Problemi da risolvere
 - Disponibilità dei dati
 - Standardizzazione delle procedure
 - Interazione uomo-macchina